ABSTRACT In this work, molecular docking and molecular dynamics (MD) simulation were applied to investigate the ability of natural cyclodextrins (CDs; Alpha, Beta and Gamma Cyclodextrins) and modified CDs (hydroxypropyl, random methyl and amino Beta Cyclodextrins) to form the stable inclusion complexes (ICs) with Crizotinib, the oral small molecule kinase inhibitor as a chemotropic drug. Results of molecular docking and MD simulation studies demonstrated that Crizotinib forms stable ICs with all natural and modified CDs and in the presence of this drug, all six CDs become more rigid. The presence of Crizotinib and the release of water molecules result in a decrease in the number of hydrogen bonds between cyclodextrins (CDs) and solvent molecules within the encapsulated CDs, compared to the hydrogen bonds observed in free CDs. Additionally, HPBCD exhibited the strongest affinity for binding and established the highest quantity of hydrogen bonds with Crizotinib. Finally, all results of this paper demonstrated the potential of using this formulation to improve the bioavailability of the selected drug.
Read full abstract