Carbide-free bainitic steel was designed for railway infrastructure application, focusing on high-speed and heavy-loaded freight tracks. Considering the complex state of stresses occurring on the rails running surface, mode III plays a significant role in the initiation and propagation of fatigue cracks of rails during service. Thus, the Fatigue Crack Growth Rate (FCGR) under mixed-mode loading conditions (I+III) was evaluated. It was revealed, that fatigue lifetime increases with loading angle modes. In the area of fatigue fracture, transgranular cracking mechanisms dominated. For the stable fatigue crack growth, a trend was observed related to the decrease in the fraction of intergranular fracture with the increasing loading angle modes (α). Secondary cracks indicated privileged cracking directions related to the crystallographic structure of bainite. The influence of the mechanical stability of retained austenite during mixed-mode FCGR requires further in-depth research. These studies contribute to understanding the factors influencing the reliability of railway tracks in terms of designing new materials and modeling the rate of crack growth to precise assessment of the life cycle of rails.
Read full abstract