New biodegradable aliphatic PLLA-PBA-PLLA copolymers with soft poly(butylene adipate) (PBA) and hard poly(l-lactide) (PLLA) building blocks were synthesized via ring-opening polymerization (ROP). Proton nuclear magnetic resonance (1HNMR) was utilized to confirm the volume fraction of PBA (fPBA) within PLLA-PBA-PLLA. It was found that a PBA midblock (PBA-mid) within PLLA-PBA-PLLA-s (PLLA-PBA-PLLA triblock copolymer with a short PLLA block length) might display lamellar domain structure. However, PBA-mid within PLLA-PBA-PLLA-l (PLLA-PBA-PLLA triblock copolymer with a long PLLA block length) might locate itself as a nanoscale cylindrical domain surrounded by a PLLA continuous phase. Polymorphic crystals of PBA-mid within the PLLA-PBA-PLLA copolymers were formed after melt crystallization at the given temperatures, which were studied by differential scanning calorimetry (DSC) and wide-angle X-ray diffraction (WAXD) analysis. According to the WAXD and DSC analyses, it was interesting to find that the α-type crystal of PBA-mid was favorable to develop in the lower temperature region regardless of the state (crystallization or amorphous) of the PLLA component. Additionally, when the PLLA component was held in its amorphous state, it was easier for PBA-mid within the PLLA-PBA-PLLA copolymers to transform from the metastable β-form crystal to the stable α-form crystal. Furthermore, polarized optical microscopy (POM) photos provided direct evidence of the polymorphic crystals of PBA-mid within PLLA-PBA-PLLAs.