Pollen, a pivotal stage in the plant reproductive cycle, is highly sensitive to temperature fluctuations, impacting seed quality and quantity. While the importance of understanding pollen temperature limits (Tmin, Topt, Tmax - collectively PTLs) is recognized, a comprehensive synthesis of underlying drivers is lacking. Here, we examined PTLs, correlating them with vegetative tissue thermotolerance and assessing variability at the intra- and interspecific levels across 191 species with contrasting phylogeny, cultivation history, growth form and ecology. At the species level, the PTLs range from 9.0 to 42.4°C, with considerable differences among individual species. Vegetative tissue showed greater tolerance to both low and high temperatures than pollen. A significant, though weak, correlation was observed between PTLs and leaf temperature tolerance. Pollen heat tolerance was independent of that in leaves and stems. The greatest intraspecific variability was observed in pollen cold tolerance (Tmin), followed by Topt and Tmax. Phylogenetic analysis revealed family-level conservation in all three pollen temperature tolerance measures. Climate emerged as a significant PTL driver of pollen cold tolerance, with species from colder and stable climates exhibiting enhanced cold tolerance. Cultivated and wild species did not differ in their pollen temperature tolerances. Herbaceous plants showed higher tolerance to high temperatures compared to shrubs and trees, potentially reflecting divergent thermal conditions during anthesis. This study provides the first formal analysis of complex relationships between pollen temperature limits, plant characteristics and environmental factors, providing crucial insights into climate change impacts on plant reproduction.