Perovskite solar cells (PSCs) are the fastest-growing photovoltaic (PV) technology and hold great promise for the photovoltaic industry due to their low-cost fabrication and excellent efficiency. To achieve commercial readiness level, the most important factor would be yield beyond 95% at the PSC module levels. The current essential requirements for PSCs are reproducibility of high efficiency devices, scalability, and stability. The reported certified high efficiency (24–26%) results are based on the use of FAPbI3 perovskites with a bandgap of Eg≈ 1.5 eV, and the typical device's active area ranges from ≈ 0.1 cm2 to a maximum of 1 cm2. However, relatively higher bandgap PSCs are essential, especially in tandem solar cell applications. Hence, optimization of higher bandgap PSCs is a necessity. As the bandgap of the perovskites increases, the efficiency goes down due to reduced JSC and increased VOC loss. Therefore, understanding the loss mechanism and corresponding solutions need to be developed. Scaling up the device's active area without compromising the fill factor and, hence, efficiency is non-trivial. So, understanding the loss mechanism in large area devices is crucial. The stability analysis reported in the literature is inconsistent, preventing data comparison and identifying various degradation factors or failure mechanisms. Moreover, how the accelerated tests would be useful in predicting the real lifetime of the solar cells is yet to be developed. So, understanding the knowledge and the technological gaps between laboratory and industry-scale production is crucial for further development. Therefore, in this review article, we discuss the challenges and opportunities for scalable and stable high efficiency PSCs.