This study aimed to evaluate the impact of different collagen membran fixation protocols on the volume stability in horizontal ridge augmentation in the aesthetic area. A total of 48 patients with 65 augmented sites were included in this study. Implants were placed in the aesthetic region, and simultaneous guided bone regeneration (GBR) surgery was performed for horizontal ridge augmentation. Participants were divided into four groups, each comprising 12 patients, based on different absorbable collagen membrane fixation protocols. Group 1: without fixation; Group 2: fixation with absorbable sutures; Group 3: fixation with titanium pins; Group 4: fixation with titanium pins and absorbable sutures. Cone beam computed tomography (CBCT) was performed immediately after surgery and at 6 months post-surgery, respectively. The horizontal thickness of the augmented region was analyzed for volume stability at the implant shoulder (H0) and 1-5 mm apical to the implant shoulder (H1-H5). Changes in labial thickness during bone healing were calculated as absolute values (mm) and relative values (%). After 6 months of bone healing, horizontal thickness was significantly reduced at all levels (H0-H5) in all groups compared to immediate post-surgery results (p < 0.05). At H1-H5, horizontal bone loss in group 1 was significantly higher than in the other three groups (p < 0.05). Group 4 exhibited significantly less horizontal bone loss compared to group 2 at H0-H2 (p < 0.05) and group 4 compared to group 3 at H0-H1 (p < 0.05). No significant difference in horizontal bone loss between groups 2 and 3 was detected at H0-H5 (p > 0.05). Guided bone regeneration in the aesthetic area with additional membrane fixation demonstrated superior volume stability of the augmented region compared to cases without fixation. There was no significant difference in bone volume stability between membrane fixation with titanium pins and fixation with absorbable sutures. However, the combined use of pins and absorbable sutures yielded superior volume stability.
Read full abstract