Ankle push-off is important for efficient, human-like walking, and many prosthetic devices mimic push-off using motors or elastic elements. The knee is extended throughout the stance phase and begins to buckle just before push-off, with timing being crucial. However, the exact mechanisms behind this buckling are still unclear. We use a predictive neuromuscular simulation to investigate whether active muscles are required for knee buckling and to what extent ground reaction forces (GRFs) drive it. In a systematic parameter search, we tested how long the knee muscles vastus (VAS), gastrocnemius (GAS), and hamstrings could be deactivated while maintaining a stable gait with impulsive push-off. VAS deactivation up to 35% of the gait cycle resulted in a dynamic gait with increased ankle peak power. GAS deactivation up to 20% of the gait cycle was detrimental to gait efficiency and showed reduced ankle peak power. At the start of knee buckling, the GRF vector is positioned near the knee joint’s neutral axis, assisting in knee flexion. However, this mechanism is likely not enough to drive knee flexion independently. Our findings contribute to the biomechanical understanding of ankle push-off, with applications in prosthetic and bipedal robotic design, and fundamental research on human gait mechanics.
Read full abstract