Due to the impact of disordered mining activities in previous years, numerous abandoned roadways exist in the second mining district of the 13# coal seam in Chejiazhuang Coal Mine. The stability of the new roadway roof was analyzed under various distributions of abandoned roadways above. It was determined that the ultimate stable thickness of the coal layer between the new and abandoned roadways is 4.0 m. When the thickness between the two is less than 4.0 m, the roof becomes unstable after excavation, posing a risk of collapse. Advanced grouting reinforcement is required to enhance roof stability before installing U-shaped steel arches. Mechanical experiments were conducted on the polymer grouting consolidation of fractured coal, showing a significant increase in residual strength compared to intact coal. Furthermore, the uniaxial compressive strength of the polymer grouting consolidation partially recovered. On average, the consolidation coefficient and recovery coefficient were 5.28 and 85.51%, respectively. Grouting increased the ductility of the fractured surrounding rock, enhancing its resistance to deformation and plasticity. A polymer grouting consolidation technology for supporting fractured surrounding rock under the unstable roof of abandoned roadways is proposed, along with the design of corresponding support schemes and parameters. Monitoring the results of mine pressure indicated that the surrounding rock remained stable after roadway excavation, validating the effectiveness of the support schemes and parameters.
Read full abstract