The nucleocapsid protein NCp7 of HIV-1 possesses a nucleic acid chaperone activity that is critical in minus and plus strand transfer during reverse transcription. The minus strand transfer notably relies on the ability of NCp7 to destabilize the stable stem with five contiguous, double-stranded segments of both the TAR sequence at the 3′ end of the viral genome and the complementary sequence, cTAR, in minus strong-stop DNA. In order to examine the nature and the extent of NCp7 destabilizing activity, we investigated, by absorbance and fluorescence spectroscopy, the interaction of TAR and cTAR with a (12–55)NCp7 peptide containing the zinc-finger motifs but lacking the ability to aggregate the oligonucleotides. The absorbance changes in the UV band of cTAR show that seven to eight base-pairs, on average, are melted per oligonucleotide at a ratio of one peptide to 7.5 nucleotides. In contrast, the melting of TAR does not exceed an average of one base-pair per oligonucleotide. This may be linked to the greater stability of TAR, since a strong correlation between NCp7 destabilizing effect and oligonucleotide stability was observed. The effect of (12–55)NCp7 on the stem terminus was investigated by using a cTAR molecule doubly labeled at the 3′ and 5′ ends by a donor/acceptor couple. In the absence of the peptide, about 80 % of the oligonucleotides are in a dark non-fluorescent state, having a close proximity of the two dyes. The remaining 20 % are distributed between three fluorescent species, having either the terminal segment, the two terminal segments or all segments of the stem melted. This is in line with a fraying mechanism wherein the stem terminus fluctuates rapidly between open and closed states. Addition of (12–55)NCp7 shifts the equilibrium toward the open species, suggesting that NC enhances fraying of the stem terminus. Taken together, our data suggest that NCp7 activates the transient opening of base-pairs in the least stable parts of the stem. Also, this activity of NCp7 was found to be dependent on the zinc-finger motifs, since no melting was observed with a fingerless NCp7 peptide.