Cyber-physical systems (CPSs) integrate controllers, sensors, actuators, and communication networks. Tight integration with communication networks makes CPSs vulnerable to cyberattacks. In this paper, the impact of denial of service (DoS) attacks on the stability of cyber physical systems is investigated, with a focus on the transmission control protocol (TCP). A sufficient stability condition is extracted in linear matrix inequality (LMI) form. The TCP-CPS under DoS attack is modeled as a switching linear parameter-varying (LPV) time-delay system using the Markov jump model. Subsequently, a parameter-dependent stabilizing controller is designed for CPSs under DoS attacks, taking into account network parameters. Finally, the efficiency and feasibility of the findings are demonstrated through a well-known case study in the networked control systems literature.
Read full abstract