Since the discovery of buckminsterfullerene in 1985,1 intensive research has been devoted to this family of closed-cage carbon nanostructures. Endohedral metallofullerene La@C60 was already detected the same year and La@C82 was isolated few years later.2 In 1999, the synthesis, isolation and characterization of the first clusterfullerene Sc3N@C80 using the Krätschmer-Huffman method was a milestone in the field of endohedral metallofullerenes (EMF).3 The characteristic structural and electronic properties of EMFs, as well as their reactivity, have been extensively analyzed by experimental and theoretical groups.4 In particular, different rules to predict the relative stability of fullerene cages, based on the ionic model, were proposed.5 A different way to modify the properties of fullerenes is by replacing a carbon atom in the caged network with a heteroatom. The resulting heterofullerene shows distinct electronic structure and, therefore, properties from the all-carbon cage precursor. Nitrogen-doped heterofullerenes have received much more attention and investigation than boron-doped heterocages.6 Few years ago, Dunk et al. reported facile gas-phase formation of C59B by atom exchange resulting from exposure of C60 to boron vapor by means of a pulsed laser vaporization cluster source, which was the first report of borafullerene formation directly from pristine C60.7 Recent application of this technique to endohedral monometallofullerenes and clusterfullerenes at the National High Magnetic Field Laboratory in Florida lead to the formation of boron-doped EMFs with exciting electronic properties. We here analyze the characteristic electronic structure of observed B-doped metalloheterofullerenes, rationalize their stabilities and discuss about their properties. References Kroto, H. W.; Heath, J. R.; O’Brien, S. C.; Curl, R. F.; Smalley, R. E. Nature 1985, 318, 162-163.a) Heath, J. R.; O’Brien, S. C.; Zhang, Q.; Liu, Y.; Curl, R. F.; Kroto, H. W.;Tittel, F. K.; Smalley, R. E. J. Am. Chem. Soc. 1985, 107, 7779-7780; (b) Chai, Y.; Cuo, T.; Jin, C.; Haufler, R. E.; Felipe Chibante, L. P.; Fure, J.; Wang, L.; Alford, J. M.; Smalley, R. E. J. Phys. Chem. 1991, 95, 7564-7568.Stevenson, S.; Rice, G.; Glass, T.; Harich, K.; Cromer, F.; Jordan, M. R.; Craft, J.; Hadju, E.; Bible, R.; Olmstead, M. M.; Maitra, K.; Fisher, A. J.; Balch, A. L.; Dorn, H. C., Nature 1999, 401, 55.a) Rodríguez-Fortea, A.; Balch, A. L.; Poblet, J. M. Chem. Soc. Rev. 2011, 40, 3551-3563; b) Popov, A. A.; Yang, S.; Dunsch, L. Chem. Rev. 2013, 113, 5989-6113.a) Rodríguez-Fortea, A.; Alegret, N.; Balch, A. L.; Poblet, J. M., Nature Chem. 2010, 2, 955-961; b) Garcia-Borràs M., Osuna S., Swart M., Luis J.M., Solà M. Angew. Chem. Int.. Ed. 2013, 52, 9275-9278; c) Wang, Y.; Díaz-Tendero, S.; Martín, F. and Alcamí, M. J. Am. Chem. Soc., 2016, 138, 1551-1560.Lamparth, I.; Nuber, B.; Schick, G.; Skiebe, A.; Grosser, T.; Hirsch, A. Angew. Chem. Int. Ed. Engl. 1995, 34, 2257.Dunk, P. W.; Rodríguez-Fortea, A.; Kaiser, N. K.; Shinohara, H.; Poblet, J. M.; Kroto, H. W. Angew. Chem. Int. Ed. 2013, 52, 315-319.
Read full abstract