This paper presents the model UMHYSER-1D (Unsteady Model for the HYdraulics of SEdiments in Rivers 1-D), a one-dimensional hydromorphodynamic model capable of representing water surface profiles in a single river or a multiriver network, with different flow regimes considering cohesive or non-cohesive sediment transport. It has both steady and unsteady flow and sediment modules. For steady gradually varied flows, UMHYSER-1D uses the standard step method to solve the energy equation and the “NewC” scheme for the de St Venant equations. For sediment transport, UMHYSER-1D uses two methods: for long-term simulation, the unsteady terms of the sediment transport continuity equation are ignored, and a non-equilibrium sediment transport method is used. For short-term simulation, the convection–diffusion equation, with a source term arising from sediment erosion/deposition is solved using the fractional step method. The equation without the source term is solved with an implicit finite-volume method, then the equation with source term is solved. Internal boundary conditions, such as time-stage tables, rating curves, weirs, bridges, and gates are simulated. Incorporated is the active layer concept, which allows selective erosion, enabling the simulation of bed armoring. Non-cohesive sediment transport equations and cohesive sediment physical processes are applied to calculate the sediment deposition and erosion. Finally, UMHYSER-1D empirically accounts for bed geometry adjustments by using a relationship between erosion width and flow rate, an angle of repose condition for bank stability and three minimization theories. The presented validation and application cases show UMHYSER-1D’s capabilities and predicts its promising role in solving complex, real engineering cases.
Read full abstract