The development of manufacturable and scalable integrated nonlinear photonic materials is driving key technologies in diverse areas, such as high-speed communications, signal processing, sensing, and quantum information. Here, we demonstrate a nonlinear platform—InGaP-on-insulator—optimized for visible-to-telecommunication wavelength χ(2) nonlinear optical processes. In this work, we detail our 100 mm wafer-scale InGaP-on-insulator fabrication process realized via wafer bonding, optical lithography, and dry-etching techniques. The resulting wafers yield 1000 s of components in each fabrication cycle, with initial designs that include chip-to-fiber couplers, 12.5-cm-long nested spiral waveguides, and arrays of microring resonators with free-spectral ranges spanning 400–900 GHz. We demonstrate intrinsic resonator quality factors as high as 324 000 (440 000) for single-resonance (split-resonance) modes near 1550 nm corresponding to 1.56 dB/cm (1.22 dB/cm) propagation loss. We analyze the loss vs waveguide width and resonator radius to establish the operating regime for optimal 775–1550 nm phase matching. By combining the high χ(2) and χ(3) optical nonlinearity of InGaP with wafer-scale fabrication and low propagation loss, these results open promising possibilities for entangled-photon, multi-photon, and squeezed light generation.