High-pressure die cast magnesium alloy AM50 is currently used extensively in large and complex shaped thin-wall automotive components. For further expansion of the alloy usage in automobiles, novelmanufacturing processes need to be developed. In this study, squeeze casting of AM50 alloy with a relatively thick cross section was carried out using a hydraulic press with an applied pressure of 70 MPa. Microstructure and mechanical properties of the squeeze cast AM50 with a cross-section thickness of 10 mm were characterized in comparison with the die cast counterpart. The squeeze cast AM50 alloy exhibits virtually no porosity in the microstructure as evaluated by both optical microscopy and the density measurement technique. The results of tensile testing indicate the improved tensile properties, specifically ultimate tensile strength and elongation, for the squeeze cast samples over the conventional high-pressure die cast parts. The analysis of tensile behavior show that the strain-hardening rate during the plastic deformation of the squeeze cast specimens is constantly higher than that of the die cast specimens. The scanning electron microscopy fractography evidently reveals the ductile fracture features of the squeeze cast alloy AM50.