The space of monic squarefree polynomials has a stratification according to the multiplicities of the critical points, called the equicritical stratification. Tracking the positions of roots and critical points, there is a map from the fundamental group of a stratum into a braid group. We give a complete determination of this map. It turns out to be characterized by the geometry of the translation surface structure on CP1\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\mathbb{C}\\mathbb{P}^1$$\\end{document} induced by the logarithmic derivative df/f\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\ extrm{d}f/f$$\\end{document} of a polynomial in the stratum.
Read full abstract