This paper addresses the problem of comparing minimal free resolutions of symbolic powers of an ideal. Our investigation is focused on the behavior of the function $${{\,\mathrm{depth}\,}}R/I^{(t)} = \dim R -{{\,\mathrm{pd}\,}}I^{(t)} - 1$$ , where $$I^{(t)}$$ denotes the t-th symbolic power of a homogeneous ideal I in a noetherian polynomial ring R and $${{\,\mathrm{pd}\,}}$$ denotes the projective dimension. It has been an open question whether the function $${{\,\mathrm{depth}\,}}R/I^{(t)}$$ is non-increasing if I is a squarefree monomial ideal. We show that $${{\,\mathrm{depth}\,}}R/I^{(t)}$$ is almost non-increasing in the sense that $${{\,\mathrm{depth}\,}}R/I^{(s)} \ge {{\,\mathrm{depth}\,}}R/I^{(t)}$$ for all $$s \ge 1$$ and $$t \in E(s)$$ , where $$\begin{aligned} E(s) = \bigcup _{i \ge 1}\{t \in {\mathbb {N}}| i(s-1)+1 \le t \le is\} \end{aligned}$$ (which contains all integers $$t \ge (s-1)^2+1$$ ). The range E(s) is the best possible since we can find squarefree monomial ideals I such that $${{\,\mathrm{depth}\,}}R/I^{(s)} < {{\,\mathrm{depth}\,}}R/I^{(t)}$$ for $$t \not \in E(s)$$ , which gives a negative answer to the above question. Another open question asks whether the function $${{\,\mathrm{depth}\,}}R/I^{(t)}$$ is always constant for $$t \gg 0$$ . We are able to construct counter-examples to this question by monomial ideals. On the other hand, we show that if I is a monomial ideal such that $$I^{(t)}$$ is integrally closed for $$t \gg 0$$ (e.g. if I is a squarefree monomial ideal), then $${{\,\mathrm{depth}\,}}R/I^{(t)}$$ is constant for $$t \gg 0$$ with $$\begin{aligned} \lim _{t \rightarrow \infty }{{\,\mathrm{depth}\,}}R/I^{(t)} = \dim R - \dim \oplus _{t \ge 0}I^{(t)}/{\mathfrak {m}}I^{(t)}. \end{aligned}$$ Our last result (which is the main contribution of this paper) shows that for any positive numerical function $$\phi (t)$$ which is periodic for $$t \gg 0$$ , there exist a polynomial ring R and a homogeneous ideal I such that $${{\,\mathrm{depth}\,}}R/I^{(t)} = \phi (t)$$ for all $$t \ge 1$$ . As a consequence, for any non-negative numerical function $$\psi (t)$$ which is periodic for $$t \gg 0$$ , there is a homogeneous ideal I and a number c such that $${{\,\mathrm{pd}\,}}I^{(t)} = \psi (t) + c$$ for all $$t \ge 1$$ .