Repositioning approved antitumor drugs for different cancers is a cost-effective approach. Gilteritinib was FDA-approved for the treatment of FLT3-mutated acute myeloid leukemia in 2018. However, the therapeutic effects and mechanism of Gilteritinib on other malignancies remain to be defined. In this study, we identified that gilteritinib has an inhibitory effect on lung cancer cells (LCCs) without FLT3 mutation in vitro and in vivo. Unexpectedly, we found that gilteritinib induces cholesterol accumulation in LCCs via upregulating cholesterol biosynthetic genes and inhibiting cholesterol efflux. This gilteritinib-induced cholesterol accumulation not only attenuates the antitumor effect of gilteritinib but also induces gilteritinib-resistance in LCCs. However, when cholesterol synthesis was prevented by squalene epoxidase (SQLE) inhibitor NB-598, both LCCs and gilteritinib-resistant LCCs became sensitive to gilteritinib. More importantly, the natural cholesterol inhibitor 25-hydroxycholesterol (25HC) can suppress cholesterol biosynthesis and increase cholesterol efflux in LCCs. Consequently, 25HC treatment significantly increases the cytotoxicity of gilteritinib on LCCs, which can be rescued by the addition of exogenous cholesterol. In a xenograft model, the combination of gilteritinib and 25HC showed significantly better efficacy than either monotherapy in suppressing lung cancer growth, without obvious general toxicity. Thus, our findings identify an increase in cholesterol induced by gilteritinib as a mechanism for LCC survival, and highlight the potential of combining gilteritinib with cholesterol-lowering drugs to treat lung cancer.
Read full abstract