Abstract

Lung squamous cell carcinoma (LUSC) lacks effective targeted therapies and has a poor prognosis. Disruption of squalene epoxidase (SQLE) has been implicated in metabolic disorders and cancer. However, the role of SQLE as a monooxygenase involved in oxidative stress remains unclear. We analyzed the expression and prognosis of lung adenocarcinoma (LUAD) and LUSC samples from GEO and TCGA databases. The proliferative activity of the tumors after intervention of SQLE was verified by cell and animal experiments. JC-1 assay, flow cytometry, and Western blot were used to show changes in apoptosis after intervention of SQLE. Flow cytometry and fluorescence assay of ROS levels were used to indicate oxidative stress status. We investigated the unique role of SQLE expression in the diagnosis and prognosis prediction of LUSC. Knockdown of SQLE or treatment with the SQLE inhibitor terbinafine can suppress the proliferation of LUSC cells by inducing apoptosis and reactive oxygen species accumulation. However, depletion of SQLE also results in the impairment of lipid peroxidation and ferroptosis resistance such as upregulation of glutathione peroxidase 4. Therefore, prevention of SQLE in synergy with glutathione peroxidase 4 inhibitor RSL3 effectively mitigates the proliferation and growth of LUSC. Our study indicates that the low expression of SQLE employs adaptive survival through regulating the balance of apoptosis and ferroptosis resistance. In future, the combinational therapy of targeting SQLE and ferroptosis could be a promising approach in treating LUSC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call