A predictive model was proposed for determining the high-temperature free height of perfluoroalkoxy alkane springs in air-operated double-bellow pumps with the aim of investigating their relaxation. The model incorporates classical spring deformation theory and considers the material, structure, and real-world operating conditions of the perfluoroalkoxy alkane springs. Experimental validation of the model is also conducted. This study examines the effects of varying temperatures and pre-compression values on the relaxation of perfluoroalkoxy alkane springs' free height. It collects relaxation curves under different temperatures and various pre-compression conditions. The results indicate that spring relaxation increases with higher temperatures when there is no pre-compression. Furthermore, increasing pre-compression at the same temperatures leads to greater spring relaxation. Pre-compression has a more significant impact on spring relaxation. By comparing the experimental data with the simulated curve generated by the model, it is evident that the predicted spring free height relaxation closely aligns with the actual measurements. This verification demonstrates the effectiveness and accuracy of the proposed model in evaluating the relaxation of perfluoroalkoxy alkane springs' free height. Moreover, the model provides a valuable tool for predicting the lifespan of similar perfluoroalkoxy alkane springs in engineering applications.