Climate change and intense human activity are exacerbating changes in species' ranges. While the rapid spread of invasive alien species is well documented worldwide, the phenomenon of the spread of native species is poorly understood. To explain the problem of rapidly spreading species in the changing world, it is necessary to understand their ecology, genetic diversity and habitat limitation. The aim of our study was to analyze the ecological requirements and genetic diversity in the population of the macrophyte Trapa natans s. l., an invasive alien species in North America but native in Europe and Asia. We investigated the populations in its native range (Central and Northeastern Europe), where the species is defined as rare or extinct. We found the occurrence of T. natans in Northeastern Europe aquatic habitats where, up to now, it was described as an extinct species. The results of our environmental studies showed that the species has a wide range of tolerance to habitat conditions and lives in medium to highly nutrient-rich water with low and high salinity. Using Amplified Fragment Length Polymorphism (AFLP) analysis, we revealed high genetic variability within populations with relatively limited differentiation between populations. We showed that some populations are highly diverse (possibly refugia; Central Europe) and others are homogeneous (new sites, commercial reintroduction; Northeastern Europe). Conservation status of T. natans in its native range should be reconsidered, as the species has spread rapidly in recent decades and could be detrimental to aquatic habitats. The conclusion is that expansion/invasion can start from small populations, but under favorable conditions these populations spread rapidly. The introduction of species (even native) should be done carefully, if at all, as uncontrolled introduction to new locations, e.g. private ponds, could be the start of dispersal (native habitats) or invasion (non-native area).