Abstract

The pet trade has facilitated the spread of invasive alien species (IAS) globally, with negative consequences for biodiversity. The prediction of impacts is a major goal for invasion ecologists, and is especially crucial in an industry often lacking knowledge about traded species. We focused on the predatory gastropod Anentome helena, a species originating in south-east Asia and traded around the world, but with taxonomic uncertainty. We first set out to determine where our study organism fell within the A. “helena” species complex, known to comprise at least four cryptic species, before assessing the effect of temperature on the number of prey, the pulmonate snail Physella acuta, killed per predator via functional response experiments at two temperatures. We used 22 °C as a recommended temperature for housing the species in captivity, and 18 °C as a representative summer lake temperature in temperate climates of Europe. We also assessed the role of predator group size (1×, 2×, 3×) on predation (total consumption and average per capita consumption) at the experimental temperatures with fixed densities of prey, as well as the effect of these temperatures on prey activity. Our organisms belonged to a cryptic species originating from Thailand (Anentome sp. A), matching the findings of aquarium trade samples in other continents. In the functional response experiments, we found maximum feeding rate to be significantly reduced at the lower temperature. A similar result ensued from group feeding, with total consumption significantly reduced and the reduction in average per capita consumption approaching significance at the lower temperature. There was no significant effect of group size on the average per capita consumption in the group trial, indicating neutral conspecific interactions. No significant effect of temperature on the activity of the prey species was found, suggesting decreased consumption was mainly driven by predator, rather than prey. These results suggest limited A. helena impacts in the short-term, but increasing temperatures with climate change may facilitate greater consequences from releases. We suggest future studies assess other potential predatory impacts and survival across relevant abiotic conditions, and encourage the use of similar methods to assess the impacts of other commonly traded species.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.