ABSTRACT The rapid spread of fake news on social media poses a significant threat to modern societies. Traditional machine learning approaches have limitations in handling the ever-increasing volume and complexity of data. This research explores quantum machine learning for fake news classification by proposing Pegasos Quantum Support Vector Machines, a novel algorithm combining Pegasos Support Vector Machines with quantum kernels, and advanced data encoding. Through experimentation on the IBM Qasm Simulator, Pegasos Quantum Support Vector Machines scored 90.67% in accuracy. This study is primarily focused on local simulation, where the proposed algorithm scored as high as 95.63%, with 95.44% precision, 99.52% recall, and 96.76% f1-score. The achieved results outperform other machine learning methods on the BUZZFEED dataset, including Quantum Neural Networks and Quantum K-Nearest Neighbors. Its successful implementation paves the way for further refinement of quantum machine learning techniques in fake news classification. The PegasosQSVM algorithm encounters, however, some implementation issues on real world Quantum Processing Units(QPU). Noisy Intermediate-Scale Quantum era QPU are prone to noise effects that affect the computations negatively, and by extension, the results of quantum machine learning algorithms. Further implementation on real QPU and use of error mitigation techniques, are needed for optimal results on quantum hardware.
Read full abstract