Low temperature thermal desalination (LTTD) process involves flash evaporation of a seawater at 28–29°C in a single-stage evaporator maintained at a vacuum of around 25–27 m bar (abs). The seawater was splashed inside an evaporator through a 0.1 m diameter upward facing nozzles of around 24 nos arranged evenly throughout the evaporator and generated vapour was condensed in the shell and tube condenser using cooling water available at 12–13°C sucked from the deep sea through a long HDPE pipe. The main objective of this study was to find out the effect of geometry of the upward facing nozzles on the flash evaporation rate as well as on the non-equilibrium temperature difference (NETD) of the flashing process. Two different spout nozzle geometries with 0.37–0.87 m height were used in the experiment. The study indicated that the flashing rate increased by 0.9% (average) and and the NETD (Two – Tsat) decreased by 0.7°C (average), respectively, when nozzle height was increased by 0.87 m. Mechanism that controlled these two factors were identified and discussed in this paper. Drawbacks of 0.37 m nozzle geometry was also discussed. It was reported in literature that 4% yield ratio was obtained for a nozzle injection pressure of 1 bar for a similar desalination process. But in the present study, a maximum of 1.12% yield ratio was obtained with a nozzle injection pressure of around 0.17 bar. In this work,the effect of the process parameters on the liquid flashing in a LTTD desalination process was investigated and discussed. In order to fine tune the evaporator design for the future LTTD plants, the experimental results of flash evaporation were compared with two mathematical models obtained from the literature. While comparing the results, it was observed that the model which used actual heat (Twi – Two) made a good agreement with the experimental data compared to the other model that used superheat (Twi – Tsat). From the experimental study, it was observed that the NETD (i.e. thermal loss) measured was found to be higher than the predicted value. The reason that caused the difference in the NETD value was investigated and discussed. Suitable suggestions to reduce these NETD in the flashing process were also presented.
Read full abstract