Histones are essential for DNA packaging and undergo post-translational modifications that significantly influence gene regulation. Among these modifications, histone tail cleavage has recently garnered attention despite being less explored. Cleavage by various proteases impacts processes such as stem cell differentiation, aging, infection, and inflammation, though the mechanisms remain unclear. This review delves into recent insights on histone proteolytic cleavage and its epigenetic significance, highlighting how chromatin, which serves as a dynamic scaffold, responds to signals through histone modification, replacement, and ATP-dependent remodeling. Specifically, histone tail cleavage is linked to critical cellular processes such as granulocyte differentiation, viral infection, aging, yeast sporulation, and cancer development. Although the exact mechanisms connecting histone cleavage to gene expression are still emerging, it is clear that this process represents a novel epigenetic transcriptional mechanism intertwined with chromatin dynamics. This review explores known histone tail cleavage events, the proteolytic enzymes involved, their impact on gene expression, and future research directions in this evolving field.