Fusarium rot on melon fruit has become an important postharvest disease for producers worldwide, typically involving multiple Fusarium pathogens (Khuna et al. 2022; Medeiros Araújo et al. 2021). In 2022, Fusarium fruit rot of muskmelon (Cucumis melo var. conomon) occurred sporadically in a field at Huainan Academy of Agricultural Sciences (32.658193º N, 117.064922º E) with an incidence of about 10%. Among these diseased muskmelons, a fruit exhibiting a white to yellowish colony athe intersection of the diseased and healthy tissues was collected and labeled TGGF22-17. The streak plate method was employed to isolate fungal spores on Bengal Red PDA (potato dextrose agar), which were then incubated at 25℃ in darkness. Following isolation and purification, a single-spore strain, TGGF22-17, was obtained and analyzed using morphological characters on PDA, synthetic nutrient agar (SNA) and carnation leaf agar (CLA) (Leslie and Summerell 2006), along with molecular identification. Colours were rated according to the color charts of Kornerup and Wanscher (1978). Based on the colony morphology on PDA, the isolate displayed a rosy buff or buff color with a white to buff margin. The colony margin was undulate, with the reverse transitioning from amber-yellow to honey-yellow. Aerial macroconidia on SNA were thin-walled, hyaline, mostly 3-5 septate, falcate, and measured 18.5-46.4 (x̄=34.2) × 2.9-4.8 (x̄ =3.9) μm in size (n =50). Sporodochial macroconidia on CLA were mostly five-septate with long apical and basal cells, exhibiting dorsiventral curvature. They were hyaline, with the apical cell hooked to tapering and the basal cell foot-shaped, measuring 46.5-89.6 (x̄ =72.3) × 3.5-5.0 (x̄ =4.3) μm in size (n = 100). Portions of three loci (TEF-1α, RPB1 and RPB2) were amplified and sequenced as described by Wang et al. (2019). Sequences were deposited in GenBank with accession number PP196583 to PP196585. The three gene sequences (TEF-1α, RPB1 and RPB2) of strain TGGF2022-17 shared 99.5% (629/632bp), 97.9% (1508/1540 bp) and 99.9% (1608/1609 bp) identity to the ex-type strain F. ipomoeae LC12165 respectively by pairwise DNA alignments on the FUSARIOID-ID database (https://www.fusarium.org). Phylogenetic analysis of the partial TEF-1α and RPB2 sequences with PhyloSuite (Zhang et al. 2020) showed the isolated fungus clustered with F. ipomoeae. Based on the morphological and phylogenetic analyses, TGGF22-17 was identified as F. ipomoeae. Pathogenicity tests were performed on healthy melons, which were surface-sterilized with 75% alcohol and wounded using a sterilized inoculation needle. A 4-mm diameter plug from a 7-day-old SNA culture of TGGF22-17 was aseptically inserted in the middle of the wound, sealed with plastic bag after absorbent cotton was included to maintain moisture. Five melons were each inoculated at three points. Noncolonized PDA agar plugs served as the negative control. The inoculated and uninoculated plugs were removed approximately 48 hours after inoculation. The melon inoculated with TGGF22-17 exhibited water-soaked black lesions 48h post-inoculation, resulting in a 100% infection rate (15/15). After 7 days, mycelium was obseved on the inoculated melons. No disease symptoms were observed on the uninoculated melons. To fulfill Koch's postulates, fungi were isolated from the inoculated fruit and confirmed as F. ipomoeae by morphological observation. Fusarium ipomoeae has been reported to cause fruit rot on winter squash (Cucurbita maxima) in Japan (Kitabayashi et al. 2023). To our knowledge, this is the first report of fruit rot on muskmelon caused by F. ipomoeae in China and this report will be valuable for monitoring and management of fruit rot disease on muskmelons.
Read full abstract