Critical heat fluxes (CHFs) for subcooled flow boiling of water in a vertical tube due to steady and exponentially heat inputs were measured. The platinum tube with an inner diameter of 2.0 mm and a length of 94.8 mm was placed vertically in the experimental water loop. The upward flow velocity was approximately 2.5 m/s and the outlet subcooling ranged from 18 to 48 K. The heat generation rate was varied exponentially to investigate the effect of e-folding time on the CHFs. As an experimental result, the CHFs increased with a decrease in the e-folding time. When the e-folding times were longer, the CHFs were almost constant, whereas the CHFs increased for shorter e-folding times. The CHFs were independent on outlet subcoolings at low flow conditions. Moreover, it was considered that the explosive-like CHF occurred when the inner surface temperature of the tube exceeded the lower limit of heterogeneous spontaneous nucleation (HSN) temperature.