Arginine vasopressin (AVP) plays a hypothermic regulatory role in thermoregulation and is an important endogenous mediator in this mechanism. In the preoptic area (POA), AVP increases the spontaneous firing and thermosensitivity of warm-sensitive neurons and decreases those of cold-sensitive and temperature-insensitive neurons. Because POA neurons play a crucial role in precise thermoregulatory responses, these findings indicate that there is an association between the hypothermia and changes in the firing activity of AVP-induced POA neurons. However, the electrophysiological mechanisms by which AVP controls this firing activity remain unclear. Therefore, in the present study, using in vitro hypothalamic brain slices and whole-cell recordings, we elucidated the membrane potential responses of temperature-sensitive and –insensitive POA neurons to identify the applications of AVP or V1a vasopressin receptor antagonists. By monitoring changes in the resting potential and membrane potential thermosensitivity of the neurons before and during experimental perfusion, we observed that AVP increased the changes in the resting potential of 50% of temperature-insensitive neurons but reduced them in others. These changes are because AVP enhances the membrane potential thermosensitivity of nearly 50% of the temperature-insensitive neurons. On the other hand, AVP changes both the resting potential and membrane potential thermosensitivity of temperature-sensitive neurons, with no differences between the warm- and cold-sensitive neurons. Before and during AVP or V1a vasopressin receptor antagonist perfusion, no correlation was observed between changes in the thermosensitivity and membrane potential of all neurons. Furthermore, no correlation was observed between the thermosensitivity and membrane potential thermosensitivity of the neurons during experimental perfusion. In the present study, we found that AVP induction did not result in any changes in resting potential, which is unique to temperature-sensitive neurons. The study results suggest that AVP-induced changes in the firing activity and firing rate thermosensitivity of POA neurons are not controlled by resting potentials.