Polyaniline is widely used in the field of electrochemistry due to its excellent electrical conductivity. However, its effectiveness and mechanism of enhancing adsorption property are unclear. Herein, chitosan/polyaniline nanofibrous composite membranes with average diameter ranging from 200 to 300 nm were fabricated by electrospinning technology. The as-prepared nanofibrous membranes exhibited significantly improved adsorption capacity of 814.9 mg/g and 618.0 mg/g towards acid blue 113 and reactive orange dyes, which were 121.8 % and 99.4 % higher than that of pure chitosan membrane. The doped polyaniline promoted the dye transfer rate and capacity due to the enhanced conductivity of the composite membrane. Kinetic data showed that chemisorption was the rate-limiting step, and thermodynamic data indicated the adsorption of the two anionic dyes was spontaneous monolayer adsorption. This study provides a feasible strategy to introduce conductive polymer into adsorbent to construct high performance adsorbents for wastewater treatment.