Previous studies have used different imaging sequences and different enhanced phases for breast lesion calsification in radiomics. The optimal sequence and contrast enhanced phase is unclear. To identify the optimal magnetic resonance imaging (MRI) radiomics model for lesion clarification, and to simulate its incremental value for multiparametric MRI (mpMRI)-guided biopsy. Retrospective. 329 female patients (138 malignant, 191 benign), divided into a training set (first site, n = 192) and an independent test set (second site, n = 137). 3.0-T, fast spoiled gradient-echo and fast spin-echo T1-weighted imaging (T1WI), fast spin-echo T2-weighted imaging (T2WI), echo-planar diffusion-weighted imaging (DWI), and fast spoiled gradient-echo contrast-enhanced MRI (CE-MRI). Two breast radiologists with 3 and 10 years' experience developed radiomics model on CE-MRI, CE-MRI + DWI, CE-MRI + DWI + T2WI, CE-MRI + DWI + T2WI + T1WI at each individual phase (P) and for multiple combinations of phases. The optimal radiomics model (Rad-score) was identified as having the highest area under the receiver operating characteristic curve (AUC) in the test set. Specificity was compared between a traditional mpMRI model and an integrated model (mpMRI + Rad-score) at sensitivity >98%. Wilcoxon paired-samples signed rank test, Delong test, McNemar test. Significance level was 0.05 and Bonferroni method was used for multiple comparisons (P = 0.007, 0.05/7). For radiomics models, CE-MRI/P3 + DWI + T2WI achieved the highest performance in the test set (AUC = 0.888, 95% confidence interval: 0.833-0.944). The integrated model had significantly higher specificity (55.3%) than the mpMRI model (31.6%) in the test set with a sensitivity of 98.4%. The CE-MRI/P3 + DWI + T2WI model is the optimized choice for breast lesion classification in radiomics, and has potential to reduce benign biopsies (100%-specificity) from 68.4% to 44.7% while retaining sensitivity >98%. 3 TECHNICAL EFFICACY: Stage 2.