Abstract
The caudolenticular (or transcapsular) gray bridges (CLGBs) connect the caudate nucleus (CN) and putamen across the internal capsule. The CLGBs function as the main efferent terminus from premotor and supplementary motor area cortex to the basal ganglia (BG). We conjectured if inherent variations in numbers and sizes of CLGBs could contribute to abnormal cortical-subcortical connectivity in Parkinson's disease (PD), a neurodegenerative disorder featuring a hindrance of BG processing. However, there are no literature accounts of normative anatomy and morphometry of CLGBs. We therefore retrospectively analyzed axial and coronal 3T fast spoiled gradient-echo magnetic resonance images (MRIs) of 34 healthy individuals for bilateral CLGBs symmetry, their numbers, dimensions of thickest and longest bridge, and axial surface areas of CN head and putamen. We calculated Evans' index (EI) to account for any brain atrophy. We statistically tested associations between sex or age and measured dependent variables, and linear correlations between all measured variables (significance at p < 0.05). Study subjects were F:M=23:11 with mean age 49.9 years. All EI's were normal (<0.3). All but three CLGBs were bilaterally symmetrical with a mean 7.4 CLGBs per side. Mean CLGBs thickness and lengths were 1.0 and 4.6 mm, respectively; CN head and putamen areas were 205and 382.0 mm2 , respectively. Females had thicker CLGBs (p=0.02) but we found no significant interactions between sex or age and measured dependent variables, and no correlations between CN head or putamen areas and CLGBs dimensions. These normative MRI dimensions of the CLGBs will help guide future studies on the possible role of CLGBs morphometry in PD predisposition.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have