Spodoptera frugiperda multiple nucleopolyhedrovirus (SfMNPV), belonging to the species Alphabaculovirus spofrugiperdae, has been recently registered as an insecticide in China. This virus has a specific effect on the global major agricultural pest Spodoptera frugiperda. To gain insights into viral infection, replication processes, and the complex formation of viral particles, in vitro studies using cell lines are essential tools. Although the IPLB-Sf9 and IPLB-Sf21 cell lines derived from S. frugiperda are widely used for studies on the infection and replication mechanisms of Autographa californica multiple nucleopolyhedrovirus (AcMNPV), their capacity to produce viral polyhedra after SfMNPV infection is not optimal. To address this limitation, a novel cell line named IOZCAS-Sf-1 has been developed from a S. frugiperda population sourced Yunnan, China. The mitochondrial COX1 gene analysis confirmed the species origin of the IOZCAS-Sf-1 cell line. Furthermore, a comparative study was carried out to contrast the COX1 gene sequence of this novel cell line with that of IPLB-Sf9, highlighting the distinctions between the two. Importantly, the IOZCAS-Sf-1 cells exhibited a remarkable ability to generate polyhedra when infected with AcMNPV and SfMNPV, respectively. Consequently, this cellular lineage is considered a promising and valuable resource. It serves not only to investigate the molecular mechanisms of viral replication and its impact on host cells, but also to explore the transfection efficiency of SfMNPV DNA. This exploration further expands into its potential application in recombinant DNA experiments, laying a theoretical groundwork for the advancement of more effective biopesticides and sustainable agricultural practices.