Field experiments were conducted on Dark Gray Luvisolic soils (Typic Cryoboralf) from 2004 to 2006 (wheat-canola-barley rotation) near Star City, Saskatchewan, and from 2004 to 2007 (barley-canola-wheat-barley rotation) near Beaverlodge, Alberta. The aim was to compare the effects of controlled-release urea (CRU) vs. conventional urea (hereafter called urea) on seed yield and N (i.e., protein) concentration, and N use efficiency (NUE). The treatments were combinations of tillage system [conventional tillage (CT) and no tillage (NT)], and N source (urea, CRU and a blended mixture), placement method (spring-banded, fall-banded and split application) and application rate (0-90 kg N ha-1). There was no tillage × fertilizer treatment interaction on the measured crop variables. Seed yield and crop N uptake and, to a lesser degree, seed N concentration generally increased with N application to 90 kg N ha-1. Fall-banded CRU or urea generally produced lower crop yield and N uptake than spring-banded CRU or urea. Split application of urea (half each at seeding and tillering) resulted in higher seed yield and N concentration in at least 3 of 7 site-years than did CRU and urea applied at a similar rate. A blend of urea and CRU was as effective as spring-banded CRU (at Star City only). Seed yield, N recovery and NUE were higher with spring-banded CRU than urea in 2 site-years, and similar to urea in other site-years. We conclude that for boreal soils of the Canadian prairies, spring-banded CRU is as effective as urea, and in some years more effective, in increasing crop yield and N recovery; however, urea split application can be even more effective in addition to having an advantage in managing risk.Key words: Controlled-release urea, Gray Luvisol, nitrogen source, nitrogen recovery, nitrogen use efficiency, tillage systems
Read full abstract