ConspectusIn recent decades, there has been rapid development in the field of polymer semiconductors, particularly those based on conjugated donor-acceptor (D-A) polymers exhibiting high charge mobilities. Furthermore, the application of polymer semiconductors has been successfully extended to a wide range of functional devices, including sensors, photodetectors, radio frequency identification (RFID) tags, electronic paper, skin electronics, and artificial synapses. Over the past few years, there has been a growing focus on stimuli-responsive polymer semiconductors, which have the potential to impart additional functionalities to conventional field-effect transistors, garnering increased attention within the research community. In this context, phototunable polymer semiconductors have received significant attention due to their ability to utilize light as an external stimulus, enabling remote control of device performance with high spatiotemporal resolution. Meanwhile, integration of field-effect transistors with polymer semiconductors can enable the realization of complex functions. To achieve this, precise and controllable patterning of polymer semiconductors becomes essential. In this Account, we discuss our research findings in the context of phototunable and photopatternable polymer semiconductors. These developments encompass the following key aspects: (i) polymer semiconductors, such as poly(diketopyrrolopyrrole-quaterthiophene) (PDPP4T), exhibit phototunability when blended with the photochromic compound hexaarylbiimidazole (HABI). The photo/thermal-responsive field-effect transistors (FETs) can be fabricated using blending thin films. Remarkably, these photo/thermal-responsive transistors can function as photonically programmable and thermally erasable nonvolatile memory devices. (ii) By incorporating photoswitchable groups like azo and spiropyran into the side chains of conjugated D-A polymers, we can create phototunable polymer semiconductors. The reversible isomerization of azo and spiropyran groups significantly influences the charge transport properties of these polymer semiconductors. Consequently, the performance of the resulting FETs can be reversibly tuned through UV/visible or near-infrared light (NIR) irradiation. Notably, the incorporation of two distinct azo groups into the side chains leads to polymer semiconductors with tristable semiconducting states, offering the ability to logically control device performance using light irradiation at three different wavelengths. (iii) Photopatterning of p-type, n-type, and ambipolar semiconductors featuring alkyl side chains can be achieved using a diazirine-based, four-armed photo-cross-linker (4CNN) with a loading concentration of no more than 3% (w/w). Furthermore, the semiconducting performances of FETs with patterned thin films were found to be satisfactorily uniform. Importantly, the cross-linked thin films are robust and show good resistance to organic solvents, which is useful for fabricating all-solution processable multilayer electronic devices. (iv) The introduction of azide groups into the side chains of conjugated polymers results in a single-component semiconducting photoresist. The presence of azide groups renders the side chains with photo-cross-linking ability, enabling the successful formation of uniform patterns, even as small as 5 μm, under UV light irradiation. Benefiting from the single component feature, field-effect transistors with individual patterned thin films display satisfactorily uniform performances. Moreover, this semiconducting photoresist has proven effective for efficiently photopatterning other polymer semiconductors, demonstrating its versatility.