Suppose f is a spirallike function of type β (or starlike function of order α) on the unit disk D in C . Let Ω n , p 1 , p 2 , … , p n = { z = ( z 1 , z 2 , … , z n ) ′ ∈ C n : ∑ j = 1 n | z j | p j < 1 } , where 1 ⩽ p 1 ⩽ 2 (or 0 < p 1 ⩽ 2 ), p j ⩾ 1 , j = 2 , … , n , are real numbers. In this paper, we prove that Φ n , β 2 , γ 2 , … , β n , γ n ( f ) ( z ) = ( f ( z 1 ) , ( f ( z 1 ) z 1 ) β 2 ( f ′ ( z 1 ) ) γ 2 z 2 , … , ( f ( z 1 ) z 1 ) β n ( f ′ ( z 1 ) ) γ n z n ) ′ preserves spirallikeness of type β (or starlikeness of order α) on Ω n , p 1 , p 2 , … , p n , where β j ∈ [ 0 , 1 ] , γ j ∈ [ 0 , 1 p j ] , and β j + γ j ⩽ 1 , p j is the same as above, we choose the branches such that ( f ( z 1 ) z 1 ) β j | z 1 = 0 = 1 , ( f ′ ( z 1 ) ) γ j | z 1 = 0 = 1 , j = 2 , … , n .
Read full abstract