Since the successful synthesis of α-phosphorus carbide (α-CP) using carbon doping technology, α-CP has exhibited excellent carrier mobility and anisotropy at room temperature, underscoring its potential for spintronic applications. The application of CP in spintronic devices is limited due to its lack of magnetism. Effective magnetic injection in non-magnetic semiconductors can typically be achieved by doping with magnetic atoms. In this study, we calculated the electromagnetic properties of transition metal (TM) atoms adsorbed at different positions on α-CP using first principles. Notably, we found that α-CP nanoribbons adsorbed with Fe and Mn atoms of a specific width exhibit stable half-metallicity. We discovered that α-CP nanoribbons adsorbed with Fe and Mn atoms of a specific width exhibit stable half-metal properties and design magnetic tunnel junctions with half-metallic Fe_H12 and Mn_H12 adsorption structures. The results show that Mn_H12 and Fe_H12 devices exhibit a highly efficient spin filtering effect, with a TMR as high as 5521%. These findings provide theoretical guidance for the application of CP-based spintronic devices.