Kinetic Monte Carlo simulated isotherms calculated in the canonical ensemble, at temperatures below the critical temperature, for bulk fluid, surface adsorption and adsorption in a confined space, show a van der Waals (vdW) loop with a vertical phase transition between the rarefied and dense spinodal points at the co-existence chemical potential, µco. Microscopic examination of the state points on this loop reveals features that are common to these systems. At state points with chemical potentials greater than μco the microscopic configurations show clusters, which coalesce to form two co-existing phases along the vertical section of the loop (the coexistence line). As more molecules are added, the dense region expands at the expense of the rarefied region, to the point where the rarefied region becomes spherical (cylindrical for 2D-systems) with a curvature greater than that of the coexisting phases. This results in a decrease of chemical potential from µco to the liquid spinodal point where the rarefied region disappears. With a further increase in loading, the chemical potential and the density increase. The existence of a vdW loop is the microscopic reason for the hysteresis observed in the grand canonical isotherm, where the adsorption and desorption boundaries of the hysteresis loop are first-order transitions, enclosing the vertical section of the vdW loop of the canonical isotherm. However, a first-order transition is rarely observed in experiments where transitions are usually steep, but not vertical. From our extensive simulations, we provide two possible reasons: (1) the finite extent of the system and (2) the existence of high energy sites that localize the clusters. In the first case, the desorption branch, and in the second case the adsorption branch, either comes close to, or collapses onto the coexistence line. When both occur, the hysteresis loop disappears and the isotherm is reversible, as often observed experimentally.