Tuberculosis (TB) is caused by Mycobacterium tuberculosis (Mtb) and typically infects the lungs. However, extrapulmonary forms of TB can be found in approximately 20% of cases. It is suggested, that up to 10% of extrapulmonary TB affects the musculoskeletal system, in which spinal elements (spinal tuberculosis, STB) are involved in approximately 50% of the cases. STB is a debilitating disease with nonspecific symptoms and diagnosis is often delayed for months to years. In our Spinal TB X Cohort, we aim to describe the clinical phenotype of STB using whole-body 18F-fluorodeoxyglucose positron emission tomography computed tomography (PET/CT) and to identify a specific gene expression profile for the different stages of dissemination on PET/CT. Here we report on the first patient recruited into our cohort who underwent PET/CT before treatment initiation, at 6-months and at 12-months - time of TB treatment completion. A 27-year-old immunocompetent male presented with severe thoracolumbar back pain for 9 months with severe antalgic gait and night sweats. Magnetic resonance imaging (MRI) of the whole spine revealed multilevel spinal disease (T5/6, T11/12, L3/4) in keeping with STB. After informed consent and recruitment into the Spinal TB X Cohort, the patient underwent PET/CT as per protocol, which revealed isolated multilevel STB (T4-7, T11/12, L3/4) with no concomitant lung or urogenital lesion. However, sputum and urine were Xpert MTB/RIF Ultra positive and Mtb was cultured from the urine sample. CT-guided biopsy of the T11/12 lesion confirmed drug-sensitive Mtb on Xpert MTB/RIF Ultra and the patient was started on TB treatment according to local guidelines for 12 months. The 6-month follow-up PET/CT revealed new and existing spinal lesions with increased FDG-uptake despite significant improvement of clinical features and laboratory markers. After 9 months of treatment, the patient developed an acute urethral stricture, most likely due to urogenital TB, and a suprapubic catheter was inserted. The 12-month PET/CT showed significantly decreased PET/CT values of all lesions, however, significant persistent spinal inflammation was present at the end of TB treatment. Clinically, the patient was considered cured by the TB control program and currently awaits urethroplasty. In our case, PET/CT emerged as a valuable imaging modality for the initial assessment, surpassing MRI by revealing more comprehensive extensive disease. Subsequent PET/CT scans at 6-month uncovered new lesions and increased inflammation in existing ones, while by the end of TB treatment, all lesions exhibited improvement. However, the interpretation of FDG avidity remains ambiguous, whether it correlates with active infection and viable Mtb. or fibro- and osteoblast activity indicative of the healing process. Additionally, the absence of extraspinal TB lesions on PET/CT despite positive microbiology from sputum and urine maybe explained by paucibacillary, subclinical infection of extraspinal organs. The Spinal TB X Cohort endeavours to shed light on whole-body imaging patterns at diagnosis, their evolution midway through TB treatment, and upon treatment completion. Ultimately, this study aims to advance our understanding of the biology of this complex disease.
Read full abstract