Rostrocaudal progression in the development of periodic spontaneous activity in fetal rat spinal motor circuits in vitro. Developmental changes in the periodic spontaneous bursts in cervical and lumbar ventral roots (VRs) were investigated using isolated spinal cord preparations obtained from rat fetuses at embryonic days (E) 13.5-18. 5. Spontaneous bursts were observed in the cervical VR at E13.5-17.5, and in the lumbar VR at E14.5-17.5. Bursts occurrence in the cervical and lumbar VRs was correlated in a 1:1 fashion at E14.5-16. 5. The bursts in the cervical VR preceded those in the lumbar VR at E14.5, but the latter came to precede the former by E16.5. The interval between spontaneous bursts in the lumbar VR was greatly prolonged after spinal cord transection at the midthoracic level at E14.5, whereas that in the cervical VR became significantly longer at E14.5-16.5. These results suggest that the dominant neuronal circuit initiating the spontaneous bursts shifts from cervical to lumbar region during this period. Bath application of a glutamate receptor antagonist, kynurenate (4 mM), had little effect on the spontaneous bursts in either cervical or lumbar VRs at E14.5-15.5. At E16.5, kynurenate abolished the spontaneous bursts in the cervical VR. Concomitant application of kynurenate and strychnine (5 microM), a glycine receptor antagonist, abolished all spontaneous bursts, suggesting that the major transmitter mediating the spontaneous bursts changes from glycine to glutamate in the cervical region by E16.5, but not in the lumbar region during this period.
Read full abstract