Spin-transfer torque effects are reported in nanowires consisting in Co/Cu/Co trilayers electrodeposited on an anodic alumina template. Using a nanolithography process based on electrically controlled nanoindentation of the alumina template, we are able to investigate the spin transport properties of single nanowires at room temperature. For small applied magnetic fields, we have measured resistance changes above a critical direct-current (dc) injected current that corresponds to the change in resistance observed in the magnetoresistance curves at low current. We conclude that magnetic reversals are driven by a spin-polarized current. The critical current densities needed for the magnetization reversals are in the 107 A/cm2 range and the dependence of the critical currents with the applied field is consistent with the spin-transfer mechanism. For large applied magnetic fields, the differential resistance exhibits some peaks that we attribute to the onset of high-frequency excitations of the free-layer magnetization. According to the high density of electrodeposited nanowires in alumina templates, our results are promising for synchronized spin-transfer oscillators.