Room temperature grown Fe monolayer (ML) on the Ir(111) single crystal substrate has attracted great research interests as nano-skyrmion lattice can form under proper growth conditions. The formation of the nanoscale skyrmion, however, appears to be greatly affected by the diffusion length of the Fe adatoms on the Ir(111) surface. We made this observation by employing spin-polarized scanning tunneling microscopy to study skyrmion formation upon systematically changing the impurity density on the substrate surface prior to Fe deposition. Since the substrate surface impurities serve as pinning centers for Fe adatoms, the eventual size and shape of the Fe islands exhibit a direct correlation with the impurity density, which in turn determines whether skyrmion can be formed. Our observation indicates that skyrmion only forms when the impurity density is below 0.006/nm2, i.e., 12 nm averaged spacing between the neighboring defects. We verify the significance of Fe diffusion length by growing Fe on clean Ir(111) substrate at low temperature of 30 K, where no skyrmion was observed to form. Our findings signify the importance of diffusion of Fe atoms on the Ir(111) substrate, which affects the size, shape and lattice perfection of the Fe islands and thus the formation of skyrmion lattice.
Read full abstract