To reveal the role of chirality on field-free spin–orbit torque (SOT) induced magnetization switching, we propose an existence of z-torque through the formation of noncollinear spin texture during SOT-induced magnetization switching in a laterally two-level perpendicular magnetic anisotropy (PMA) system. For the investigation of torque, we simulate magnetization dynamics in the two-level PMA system with SOT, which generates the noncollinear spin texture. From the spatial distribution of magnetic energy, we reveal the additional z-directional torque contribution in the noncollinear spin texture, which is unexpected in the conventional SOT-induced magnetization switching in collinear spin texture. The z-directional torque originates from the interaction between the chirality of the noncollinear spin texture and the interfacial Dzyaloshinskii-Moriya interaction of the system. Furthermore, the experimental observation of the asymmetric magnetization switching to the direction of the current flow in the two-level PMA system supports our theoretical expectation.
Read full abstract