We present the simulation of the photochemical dynamics of cyclobutanone induced by the excitation of the 3s Rydberg state. For this purpose, we apply the complete active space self-consistent field method together with the spin-orbit multireference configuration interaction singles treatment, combined with the trajectory surface hopping for the inclusion of nonadiabatic effects. The simulations were performed in the spin-adiabatic representation, including nine electronic states derived from three singlet and two triplet spin-diabatic states. Our simulations reproduce the two previously observed primary dissociation channels: the C2 pathway yielding C2H4 + CH2CO and the C3 pathway producing c-C3H6 + CO. In addition, two secondary products, CH2 + CO from the C2 pathway and C3H6 from the C3 pathway, both of them previously reported, are also observed in our simulation. We determine the ratio of the C3:C2 products to be about 2.8. Our findings show that most of the trajectories reach their electronic ground state within 200fs, with dissociation events finished after 300fs. We also identify the minimum energy conical intersections that are responsible for the relaxation and provide an analysis of the photochemical reaction mechanism based on multidimensional scaling. Furthermore, we demonstrate a minimal impact of triplet states on the photodissociation mechanism within the observed timescale. In order to provide a direct link to experiments, we simulate the gas phase ultrafast electron diffraction patterns and connect their features to the underlying structural dynamics.