Abstract
We report a methodology that allows the investigation of the consequences of the spin-orbit coupling by means of the QTAIM and ELF topological analyses performed on top of relativistic and multiconfigurational wave functions. In practice, it relies on the "state-specific" natural orbitals (NOs; expressed in a Cartesian Gaussian-type orbital basis) and their occupation numbers (ONs) for the quantum state of interest, arising from a spin-orbit configuration interaction calculation. The ground states of astatine diatomic molecules (AtX with X = AtF) and trihalide anions (IAtI- , BrAtBr- , and IAtBr- ) are studied, at exact two-component relativistic coupled cluster geometries, revealing unusual topological properties as well as a significant role of the spin-orbit coupling on these. In essence, the presented methodology can also be applied to the ground and/or excited states of any compound, with controlled validity up to including elements with active 5d, 6p, and/or 5f shells, and potential limitations starting with active 6d, 7p, and/or 6f shells bearing strong spin-orbit couplings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.