The search for a Kitaev quantum spin liquid in crystalline magnetic materials has fueled intense interest in the two-dimensional honeycomb systems. Many promising candidate Kitaev systems are characterized by a long-range-ordered magnetic structure with an antiferromagnetic zigzag-type order, where the static moments form alternating ferromagnetic chains. Recent experiments on high-quality single crystals uncovered the existence of intriguing multi-k magnetic structures, which evolved from zigzag structures. Those discoveries have sparked new theoretical developments and amplified interest in these materials. We present an overview of the honeycomb materials known to display this type of magnetic structure and provide detailed crystallographic information for the possible single- and multi-k variants.
Read full abstract