In a ferromagnetic metal layer, the coupled charge and spin diffusion equations are obtained in the presence of both Rashba spin-orbit interaction and magnetism. The misalignment between the magnetization and the nonequilibrium spin density induced by the Rashba field gives rise to Rashba spin torque acting on the ferromagnetic order parameter. In a general form, we find that the Rashba torque consists of both in-plane and out-of-plane components, i.e., T=T(perpendicular)y^×m^+T(parallel)m^×(y^×m^). Numerical simulations on a two-dimensional nanowire consider the impact of diffusion on the Rashba torque and reveal a large enhancement to the ratio T(parallel)/T(perpendicular) for thin wires. Our theory provides an explanation for the mechanism driving the magnetization switching in a single ferromagnet as observed in the recent experiments.