In this work, we theoretically studied the spin caloritronic properties of 7-width armchair graphene nanoribbons with isolated zigzag edge extension (D-system), cove-to-zigzag edge extensions (D1-system), cove-to-cove edge extensions (D2-system), and zigzag-to-zigzag edge extensions (D3-system), respectively, by combining first-principles calculations with a non-equilibrium Green's function method. The results illustrate that the D-system and D1-system with sublattice imbalance show spin-semiconductor properties and obtain thermally induced pure spin current devoid of charge current due to the symmetric spin-up and spin-down channels around the Fermi level. Additionally, it observes substantial spin-dependent Seebeck coefficients Ssp, approximately −2.5 mV/K for the D-system and −3.0 mV/K for the D1-system, near chemical potential ±0.5 eV. More than that, the D1-system showcases a remarkable spin-dependent thermoelectric figure of merit, ZspT, at room temperature, approximately approaching 8 near the Fermi level. In contrast, the D2-system and D3-system only achieved charge-dependent thermoelectric figure of merit of about 0.5 due to the preservation of sublattice balance. Our findings provide important suggestions for designing spin caloritronic devices with high efficiency.