We construct a novel Lagrangian representation of acoustic field theory that describes the local vector properties of longitudinal (curl-free) acoustic fields. In particular, this approach accounts for the recently-discovered nonzero spin angular momentum density in inhomogeneous sound fields in fluids or gases. The traditional acoustic Lagrangian representation with a scalar potential is unable to describe such vector properties of acoustic fields adequately, which are however observable via local radiation forces and torques on small probe particles. By introducing a displacement vector potential analogous to the electromagnetic vector potential, we derive the appropriate canonical momentum and spin densities as conserved Noether currents. The results are consistent with recent theoretical analyses and experiments. Furthermore, by an analogy with dual-symmetric electromagnetic field theory that combines electric- and magnetic-potential representations, we put forward an acoustic spinor representation combining the scalar and vector representations. This approach also includes naturally coupling to sources. The strong analogies between electromagnetism and acoustics suggest further productive inquiry, particularly regarding the nature of the apparent spacetime symmetries inherent to acoustic fields.
Read full abstract