AbstractThe cost for covering active power losses makes a significant item in transmission system operators (TSO) annual budgets, and still it received limited attention in the existing literature. The focus of accurate power loss forecasting and procurement is of high increase during the past 2 years due to spikes in electricity prices, making the cost of covering the active power losses a dominant factor of TSO operational costs. This paper presents practical aspects of the highly accurate models for transmission loss forecast in the day ahead time frame for the Croatian transmission system. The contributions are two‐fold: 1) Practical insights into usable TSO data are provided, filling a critical research gap and a foundational literature review is established on transmission loss forecasting. 2) A novel method utilizing only electricity transit data as input which outperforms existing practices is presented. For this, several algorithms such as gradient boosted decision tree model (XGB), support vector regressors, multiple linear regression and fully connected feedforward artificial neural networks are developed, and implemented and validated on data obtained from the Croatian TSO. The results show that the XGB model outperforms current TSO model by 32% for 4 months of comparison and TSCNET's commercial solution by 25% during a year‐long testing period. The developed XGB model is also implemented as a software tool and put into everyday operation with the Croatian TSO.