We consider the problem of deforming a one-parameter family of hypersurfaces immersed into closed Riemannian manifolds with positive curvature operator. The hypersurface in this family satisfies mean curvature flow while the ambient metric satisfying the normalized Ricci flow. We prove that if the initial background manifold is an approximation of a spherical space form and the initial hypersurface also satisfies a suitable pinching condition, then either the hypersurfaces shrink to a round point in finite time or converge to a totally geodesic sphere as the time tends to infinity.
Read full abstract