Various interpolation and approximation methods arising in several practical applications in geometric modeling deal, at a particular step, with the problem of computing suitable rational patches (of low degree) on the unit sphere. Therefore, we are concerned with the construction of a system of spherical triangular patches with prescribed vertices that globally meet along common boundaries. In particular, we investigate various possibilities for tiling a given spherical triangular patch into quadratically parametrizable subpatches. We revisit the condition that the existence of a quadratic parameterization of a spherical triangle is equivalent to the sum of the interior angles of the triangle being π, and then circumvent this limitation by studying alternative scenarios and present constructions of spherical macro-elements of the lowest possible degree. Applications of our method include algorithms relying on the construction of (interpolation) surfaces from prescribed rational normal vector fields.